Progressive plastic changes in the hand representation of the primary motor cortex parallel incomplete recovery from a unilateral section of the corticospinal tract at cervical level in monkeys.
نویسندگان
چکیده
After a sub-total hemisection of the cervical cord at level C7/C8 in monkeys, a paralysis of the homolateral hand is rapidly followed by an incomplete recovery of manual dexterity, reaching a plateau after about 40-50 days, whose extent appears related to the size of the lesion. During a few days after the lesion, the hand representation in the contralateral motor cortex disappeared, replaced by representations of either face or more proximal body parts. Later, however, following a time course (about 40 days) consistent with the functional recovery, progressive plastic changes in the contralateral motor cortex took place, as demonstrated by a progressive reappearance of digit movements elicited by intracortical microstimulation. These progressive plastic changes, which parallel the functional recovery, correspond to a reinstallation of a hand representation, though substantially diminished in size as compared to pre-lesion. Regarding the functional recovery, the motor cortex (including the reestablished hand area) contralateral to the unilateral cervical cord lesion played a crucial role in reestablishing control on finger movements, as assessed by reversible inactivation experiments. In contrast, the motor cortex ipsilateral to the cervical cord lesion, with largely intact projections to the spinal cord, did not contribute significantly to the recovered movements by the affected hand. These observations indicate that the CS fibers spared by the lesion are not sufficient, at least in their pre-lesion condition, to control the motoneurones innervating the digit muscles and that the pathways conveying signals from the contralateral M1 underwent reorganization.
منابع مشابه
A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex.
The effects of a unilateral interruption of the dorsolateral funiculus at cervical level on the survival of neurons in the motor cortex were investigated in macaque monkeys. The lesion was made on the left side at the transition region between the 7(th) and 8(th) cervical segments, above the motoneurons controlling hand muscles. As a result, the homolateral hand became paretic, although an inco...
متن کاملEffects of rehabilitative training on recovery of hand motor function: A review of animal studies
Neuromotor systems have the capacity for functional recovery following damage to the central nervous system. This recovery can be enhanced by rehabilitative training. Animal studies in which artificial damage is induced in a specific region of the brain or spinal cord of rodents or monkeys have contributed to our understanding of the effects of rehabilitative training. In this article, I provid...
متن کاملEffects of unilateral motor cortex lesion on ipsilesional hand's reach and grasp performance in monkeys: relationship with recovery in the contralesional hand.
Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand. During the months following...
متن کاملFunctional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats.
A lateral hemisection injury of the cervical spinal cord results in Brown-Séquard syndrome in humans and rats. The hands/forelimbs on the injured side are rendered permanently impaired, but the legs/hindlimbs recover locomotor functions. This is accompanied by increased use of the forelimb on the uninjured side. Nothing is known about the cortical circuits that correspond to these behavioral ad...
متن کاملMotor cortex bilateral motor representation depends on subcortical and interhemispheric interactions.
The corticospinal tract is a predominantly crossed pathway. Nevertheless, the primary motor cortex (M1) is activated bilaterally during unilateral movements and several animal studies showed that M1 has a bilateral motor representation. A better understanding of the uncrossed corticospinal system is especially important for elucidating its role in recovery of limb control after unilateral injur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1017 1-2 شماره
صفحات -
تاریخ انتشار 2004